NASA的特制铜合金3D打印火箭部件
美国宇航局、格伦研究中心(GRC)和马歇尔太空飞行中心(MSFC)合作开发了一种具有高导电性的铜基高强度合金:GRCop-42。NASA研究人员使用粉末床融合(PBF)3D打印技术,成功3D打印了近乎完全致密的GRCop-42组件,这些组件可以抵抗变形,即使在高温下也能保持坚固。
从2014年到2017年,NASA工程师完成了3D打印燃料薄膜冷却燃烧室的开发,在2016年和2017年成功完成了几次热火试验。在这项工作的基础上,NASA团队转向开发GRCop-42,希望成品的导热性强度相对更高,发动机性能甚至高于84。
GRCop-42的3D打印流程和参数是在ConceptLaser M2 3D打印机上开发的,该打印机也用于GRCop-84的开发。2018年初研究人员对42个参数进行了初步试验,对GRCop-42制造的部件进行了测试,例如燃油喷射器面板和燃烧室内衬,并发现GRCop-42部件的性能可能比传统加工方式制造的部件要好。
“在这项研究中,MSFC和GRC证明了GRCop-42是一种易于打印的合金,可以加工成完全致密的部件。”NASA表示。“目前有望节省约20%的3D打印时间,差不多是一周的时间优势。”
集成复杂冷却通道
卫星发射的过程中,最关键的部分是制造一个强大而可靠的火箭发动机。Launcher 用于向低地球轨道发射卫星的火箭为液氧(LOX)/ 煤油火箭。典型的液氧/煤油火箭在发射台上的推进剂约为95%,更高效的火箭发动机节省的燃料可以用于增加有效载荷。
据了解,Launcher去年以来一直致力于开发概念验证发动机E-1,未来三年将开发大40倍的E-2发动机。 Launcher火箭发动机中的关键技术是3D打印和分阶段燃烧循环。
3D打印技术的应用可以减少发动机零件数量,缩短开发时间,并且更加易于制造复杂功能集成的部件,Launcher 开发的3D打印铜合金(Cucrzr)发动机部件就集成了复杂冷却通道,这一设计将使发动机冷却效率得到提升。
分阶段燃烧循环中,推进剂流过两个燃烧室,一个预燃室和一个主燃烧室。通过点燃预燃室中的少量推进剂产生的压力可用于为涡轮泵提供动力,涡轮泵迫使剩余的推进剂进入主燃烧室。增加预燃器可以提高燃油效率,但却需要更高的工程复杂性。
在点火测试中,E1 3D打印铜合金发动机能够承受最高的LOX温度持续30秒。
NASA工程人员正通过选择性激光熔融(SLM)3D打印首个全尺寸铜合金火箭发动机零件,来节约成本。
NASA空间技术任务部负责人表示,采用增材制造技术建造首个全尺寸铜合金火箭发动机零件是航空航天3D打印的里程碑。增材制造技术是有助于NASA继续探月行动,甚至维持火星探测人员生存的众多技术之一。
发动机是由大量不同材料制成的复杂零件组装而成,其提供的推力为火箭提供动力。增材制造具有降低火箭零件制造时间和成本的潜能,如火箭燃烧室铜合金内衬,在火箭燃烧室内超冷推进剂被混合并加热到将火箭送到太空所需的极端温度。
在纸一样厚的铜合金内衬壁里面,温度激增到2760℃,通过气体循环,将内衬壁外面的温度冷却到绝对零度以上100℃以下,来防止熔化,铜合金内衬是专为实现这一目的而制造。为了使气体循环,在燃烧室内衬内、外壁之间建造了200多条复杂通道。这种具有复杂内部几何特征的小通道对NASA增材制造团队带来挑战。
马歇尔太空飞行中心材料与加工实验室采用其选择性激光熔融设备融合了8255层铜合金粉末,在10天零18小时的时间内制造了燃烧室内衬。在制造燃烧室内衬之前,材料工程师建造了几个其他试验件,对材料进行了表征,且设计创造了铜合金增材制造工艺。
铜合金具有极好的导热性,这也是铜合金作为发动机燃烧室及其他零件内衬理想材料的原因。然而,这种属性却为铜合金增材制造带来挑战,因为激光很难连续熔化铜合金粉末。
目前,仅有少量铜合金火箭零件的可采用增材制造技术来制造。因此,NASA正在通过3D打印一个火箭零件来开辟技术新天地,这一组件必须经受极端高温和低温,且具有复杂的冷却通道,该通道是建造在内壁厚度为铅笔斑痕的外部上的。该零件是由NASA格伦研究中心的材料科学家创造的GRCo-84铜合金建造而成。格伦研究中心广泛的材料表征有助于验证3D打印的工艺参数,确保建造质量。格伦研究中心将开发材料机械性能的广泛数据库,用于指导未来的3D打印火箭发动机设计。为了提高美国工业竞争力,美国制造商将可使用由马歇尔飞行中心管理的NASA材料和加工信息系统中的数据。
该项目负责人称,其目标是将火箭发动机零件的建造速度提高10倍,成本降低50%以上。项目团队不仅仅是试着制造和测试一个零件,而是正在开发一种可重复的工艺,使工业界可采用该工艺制造具有先进设计的发动机零件。最终目标是提高火箭发动机建造的经济可承受性。NASA已经通过他们的材料和工艺信息系统(MAPTIS)发布了这一工艺的处理数据,以供所有的美国制造企业利用
制造铜合金发动机燃烧室内衬仅仅是低成本火箭上面级推进项目的第一步,该项目由NASA空间技术任务部的颠覆性开发计划资助。NASA的颠覆性计划资助那些将变革未来太空活动的技术开发,包括NASA的探月计划。对于工程人员而言,项目的下一步是将铜合金内衬运送到NASA的兰利研究中心,采用电子束自由成形在铜合金内衬外部直接沉积镍合金结构外壳。之后,预计于今年夏季在马歇尔飞行中心进行发动机部件的热点火测试,以确定在模拟的极端温度和压力条件下,发动机的运行情况。